
Autonomous Robotic Exploration Based on Multiple Rapidly-exploring
Randomized Trees

Hassan Umari1 and Shayok Mukhopadhyay2

Abstract— Efficient robotic navigation requires a predefined
map. Various autonomous exploration strategies exist, which
direct robots to unexplored space by detecting frontiers. Fron-
tiers are boundaries separating known space form unknown
space. Usually frontier detection utilizes image processing tools
like edge detection, thus limiting it to two dimensional (2D)
exploration. This paper presents a new exploration strategy
based on the use of multiple Rapidly-exploring Random Trees
(RRTs). The RRT algorithm is chosen because, it is biased
towards unexplored regions. Also, using RRT provides a general
approach which can be extended to higher dimensional spaces.
The proposed strategy is implemented and tested using the
Robot Operating System (ROS) framework. Additionally this
work uses local and global trees for detecting frontier points,
which enables efficient robotic exploration. Current efforts are
limited to the single robot case. Extension to multi-agent systems
and three-dimensional (3D) space is left for future effort.

I. INTRODUCTION

The main goal of an autonomous robotic exploration
algorithm is to direct robots to unknown space, thus ex-
panding the known and explored portion of a map which is
being created as a robot moves. Frontier based exploration
strategies [1], [2], [3] which are usually used for robotic
exploration, direct robots to frontier edges. Frontier edges
are lines that separate known space form unknown space in
an occupancy grid map. Once a frontier edge is detected, a
point on the detected edge, which is normally the centroid,
is assigned to a robot for exploration. In order to extract
frontier edges, the entire map has to be processed, and as
the map expands, processing it will consume more and more
computational resources [4]. This has led to research on
efficient detection of frontier edges [4], [5].

The second branch of exploration strategies deploy ran-
domized search techniques such as the simple random
walker, and the Sensor-based Random Tree (SRT) [6], [7],
which is a variation of RRT [8]. RRT is a path planning
algorithm that samples space using randomly generated
points. Random points are used to extend edges in a tree-like
structure, which consists of nodes and edges. One possible
mode of RRT based exploration is to make robots follow the
above mentioned tree structure as the tree structure grows
[9].

RRT is heavily biased towards unexplored and unvisited
regions. In addition, RRT provides completeness [8], which

1Hassan Umari is a graduate (M.Sc.) student in the Mechatronics
Engineering program, American University of Sharjah, 26666 Sharjah, UAE
b00062945@aus.edu

2Shayok Mukhopadhyay is an assistant professor of Electrical
Engineering, American University of Sharjah, 26666 Sharjah, UAE
smukhopadhyay@aus.edu

ensures complete map coverage. Due to these properties,
RRT has gained interest in exploration. However, making
robots use RRT can be inefficient because of the possibility
that robots may try to revisit map areas that are already
explored (i.e. ‘overlapping’ may occur). This is because
branches can grow from random points at different time-
steps. To avoid this, SRT was used in [5]. SRT grows one
branch at time, a robot follows this branch in space until
the branch can no longer extend due to the existence of a
physical obstacle to robot motion. However, this approach
of SRT doesn’t necessarily reduce overlapping either. If a
branch is not able to extend, the robot has to go back and
track previous positions in an attempt to find a position in
space, where a new branch can extend from. This process is
known as backtracking, and is a major source for overlap-
ping. As a result, researchers proposed solutions to reduce
backtracking [10], [11].

This paper presents a new strategy for detecting frontier
points using RRT. The robot is not made to follow a growing
RRT-tree physically in space. Instead, the tree is used in the
search for frontier points, and this search runs independently
from robot movement. The detected points are filtered and
queued to be assigned to a robot. When a point is assigned to
a robot for exploration, the robot moves towards the assigned
point. During this process, sensors onboard the robot (e.g.
laser scanner) scan and explore neighboring areas within the
sensor range. An additional novelty of this work is the use
of multiple independently growing trees for speeding up the
search for frontier points.

The exploration strategy is presently implemented on a
single robot using ROS framework. However, it can be
extended to multiple robots and to 3D space. The explo-
ration strategy is tested in presence of other commonly used
navigation components, in particular, the simultaneous local-
ization and mapping (SLAM) module [12], [13] and the path
planner module. The good performance of exploration seen
in this work provides encouragement for using RRT based
exploration approaches for fast path planning and exploration
in higher dimensional spaces, because this can help extend
the work in [14], [15] for computing invariant sets of N-
dimensional systems via efficient RRT based approaches.

This paper is organized as follows. Section II provides nec-
essary terminology used in the description of the proposed
exploration strategy. Section III introduces the exploration
strategy and its components. Section IV discusses strategy
implementation. Section V, shows the simulation and experi-
mental setup. Finally, simulation and experimental results are
shown in Section VI, and the paper is concluded in Section

VII.

II. PRELIMINARY TERMINOLOGY

Most of the following definitions are related to the RRT
algorithm [16].

Map X: The set of total space i.e. the set which con-
tains occupied (obstacles), unoccupied (free) space, and the
unknown (unexplored) space.

Occupancy grid: A 2D map representation that divides
the map into cells, each cell is indexed by its coordinates,
and a cell has a value of 1, 0, or -1 representing whether
it is occupied (i.e. there is an obstacle), free, or unknown
respectively.

Free Space Xfree: A set representing free space, i.e.
the space that has been explored and is not occupied by
obstacles.

Unknown region: An unexplored (unknown) subset of the
map.

Vertices V : Nodes or points in a map, in RRT these points
are connected to one another by the tree branches (edges),
each point on the tree is a vertex, vertices are stored in the
set V .

Edge E: An edge is the branch or line connecting two
vertices, each edge is stored in terms of the spatial coordi-
nates of the two connected points, edges are stored in the
edge set E.

Graph G: Edges and vertices both form a graph, G =
(V,E), in RRT the graph has a tree structure.

SampleFree: A function that returns random points that
are independently identically distributed (i.i.d) in the map X .

Nearest (G = (V,E), x ⊂ Xfree): A function that takes
a graph (i.e. tree vertices and edges) and a point x in the
free space as inputs, and returns a point v ⊂ V such that,
Nearest(G = (V,E), x) = argminv⊂V ‖x − v‖. If there
are multiple points v ∈ V , which are at a minimum distance
from x, then the first point v encountered while computing
argminv⊂V ‖x− v‖ is returned.

Steer: Is a function that takes two points x, y, and returns
a point z, where ‖z − y‖ is minimized, while ‖z − x‖ ≤ η,
for an η > 0, η is the tree growth rate. Large value of η
corresponds to a faster tree growth (i.e tree expands faster).

GridCheck: A function that takes a map and two points.
It returns 0 if there is an obstacle between the points based
on the given map. It returns -1 if there is an unknown region
between the points. Otherwise it returns 1 indicating that the
points are in the known free space.

PublishPoint: A function that sends detected frontier
points to the filter. The ‘filter’ is described later in the paper.

Old frontier point: A frontier point detected in earlier
iteration of the proposed frontier detector, and which is no
longer in the unknown region of the map.

Invalid frontier point: A frontier point the robot cannot
physically reach i.e. no valid path exists between robot’s
position and the given frontier point.

III. STRATEGY DESCRIPTION

The exploration strategy is split into three modules; the
RRT-based frontier detector module, the filter module, and

Fig. 1: Overall schematic diagram of the exploration
algorithm

the robot task allocator module. The frontier detector is
responsible for detecting frontier points and passing them
to the filter module. The filter module clusters the frontier
points and stores them, in this work the mean shift [17]
clustering algorithm is used. The filter module also deletes
invalid and old frontier points. The task allocator module
receives the clustered frontier points from the filter module,
and assigns them to a robot for exploration. Each module
is explained in more details in Subsections III-A, III-C, and
III-D. The exploration strategy also requires mapping and
path planning modules, which are available in existing work
[12], [13], [18]. An overall high level schematic diagram of
the exploration strategy is shown in Fig. 1. Implementation
details are available in Section IV.

The proposed configuration, i.e. splitting the exploration
strategy into three modules, i.e. ‘frontier detector module,
filter module, and task allocator module’ has the following
advantages. The task allocation routine can be changed
without affecting the detection of frontier points. Similarly
different types of frontier detectors could be tested without
affecting the behavior of the task allocator. Additionally,
multiple instances of the frontier detector can be run in
parallel for faster frontier detection, if needed.

A. RRT-Based Frontier Detector Module

The RRT-based frontier detector module discovers frontier
points. In our work, a point that is reached by the growing
RRT tree is considered a frontier point, if this point lies in
the unknown region of the map. In our implementation, the
map is represented as an occupancy grid, points located in
the unknown region carry a cell value of -1, so by reading
the cell value of a point, it can be classified as unknown,
free or occupied (i.e. an obstacle exists). Please note that
in this work the initial occupancy grid map is filled only
with unknown cells (obstacles are not known). Obstacles and
known regions (cells) are marked (i.e. the cell values in the
occupancy grid are updated) as a robot explores the map.

We propose the use of two versions of frontier detectors:
i.) a local frontier detector, and ii.) a global frontier detector.
The details related to these are provided below.

1) Local Frontier Detector:
An outline of the local frontier detector is listed in

Algorithm 1. Similar to the RRT algorithm, it starts from
a single initial vertex V = {xinit}, and the edge set E = φ,
at each iteration a random point xrand ⊂ Xfree is sampled.
The first vertex of the tree which is nearest to xrand is found,
this point is called xnearest ⊂ V . Then, the Steer function

Algorithm 1 Local Frontier Detector

1: V ← xinit; E ← φ;
2: while True do
3: xrand ← SampleFree;
4: xnearest ← Nearest(G(V,E), xrand);
5: xnew ← Steer(xnearest, xrand, η);
6: if GridCheck(map, xnearest, xnew) = −1 then
7: PublishPoint(xnew);
8: V ← xcurrent; E ← φ; . reset the tree
9: else if GridCheck(map, xnearest, xnew) = 1 then

10: V ← V ∪{xnew}; E ← E ∪{(xnearest, xnew)};
11: end if
12: end while

generates a point xnew. The GridCheck function checks if
xnew lies in the unknown region, or if any point of the line
segment between xnew and xnearest lies in the unknown
region. If either of the above conditions is true, then xnew is
considered as a frontier point. The point xnew is then sent
to the filter module, and the tree is reset, i.e. tree vertices
and edges are deleted. The next iteration of the tree starts
from the current robot position (i.e. V = {xcurrent}, and
E = φ). This step is shown in line 8 in Algorithm 1. If there
is no obstacle at xnew and no obstacle in the space between
xnew and xnearest, the tree extends by adding xnew as a
new vertex. An edge is created between xnew and xnearest.

The resetting of the tree as shown in line 8 in Algorithm
1 is one of the major differences between the usage of RRT
for exploration in this work, compared to other standard
implementations of RRT available in literature. The reason
behind resetting the tree in the local detector is explained in
Subsection III-A.3.

For each robot running the local frontier detector, a tree
generates by the process described above. Once the tree
reaches an unknown region, a frontier point is marked and
the tree is reset. This process happens during a robot’s
motion, therefore the tree grows from a new initial point
each time it resets according to line 8 in Algorithm 1. The
local detector is proposed for fast detection of frontier points
in the immediate vicinity of the robot at any time. Figure
2 shows the propagation of local RRT and the process of
detecting a frontier point.

2) Global Frontier Detector:
The outline for the global frontier detector is identical to

the local frontier detector’s outline (Algorithm 1), except that
line 8 is removed. The tree doesn’t reset and keeps growing
during the whole exploration period (i.e. until the map is
completely explored), which makes the global frontier de-
tector algorithm similar to RRT. The global frontier detector
is meant to detect frontier points through the whole map and
in regions far from the robot.

In future work related to multi-robot based exploration,
every robot can run its own local frontier detector, and a
master robot can additionally run a global frontier detector.
The scope of this paper is limited to single robot exploration,
hence, both frontier detectors are run by the same robot.

3) The Need for Global and Local Frontier Detectors:
As explained above, the local tree is reset after it detects

a frontier point and starts growing again from the robot’s
current position. This has two consequences: 1. It allows
detection of frontier points quicker because, the robot is
always given a path to reach a frontier point, so if the tree
starts growing from the robot’s current position, the chance
that the next point picked from the RRT for exploration
lies in the unknown space is higher. 2. The robot can miss
exploring small corners in a map. To fix the problem of
missing exploration of corners, and also to make sure that
points which are far from the robot’s current position are
detected and explored, we use the global frontier detector.

However, the growth of the tree in the global frontier
detector becomes slower as the tree grows larger (i.e. the
number of tree vertices increases). This can be explained by
analyzing the Voronoi diagram of RRT, as the number of tree
vertices increases, the space is decomposed into smaller and
smaller Voronoi regions. As a result, the steer function will
create edges of smaller length, hence, detection of frontier
points also becomes slower. This is why the local frontier
detector is needed. Thus our proposed strategy uses local
and global RRT-based frontier detectors to complement one
another so that frontier detection is as fast as possible.

B. Why RRT?

RRT is heavily biased to grow towards unknown regions of
the map [8], which biases the tree to detect frontier points.
This property is explained using Fig. 4, which shows the
Voronoi diagram of an RRT tree during exploration. Vertices
with larger Voronoi regions are closer to the unknown space
(as the selection of vertices is based on finding the nearest
neighbor [8], the tree is more likely to extend from these
regions).

RRT is also not limited to 2D space, as a result it can
be used in 3D exploration (which can help to extend the
work in [14], [15]). One possible 3D map representation is
the OctoMap [19]. OctoMap provides a 3D occupancy grid
representation of the environment, where it maps occupied
space, free space, and unknown space. Whether the map is
represented as a 2D occupancy grid or a 3D occupancy grid,
The GridCheck function only checks for the xnew cell,
and the cells that are on the line segment between xnew
and xnearest in the occupancy grid. Here xnew corresponds
to the vertex found using the Steer function, and xnearest
is a vertex in the RRT graph. Additionally, RRT is also
probabilistically complete [20], so it is guaranteed that the
map will be completely discovered and explored.

C. The Filter Module

The filter module receives the detected frontier points from
all the local frontier detectors, and from the global frontier
detector. The filter module first clusters the points, and it
stores only the center of each cluster, the remaining points
are discarded (not stored). The clustering and subsequent
discarding process is needed to reduce the number of frontier

unexplored space

explored space

robot

obstacle

previously
detected
frontier point

(a)

RRT

(b)

tree reached
the boundary of
unknown space

(c)

detected frontier
point

(d)

tree starts from
robot’s current position

(e) (f)

Fig. 2: Propagation of the local RRT and the detection of frontier points

In (a) the tree starts from the current position of the robot, in (b) and (c) the tree keeps growing, in (d) a tree
vertex lying in the unknown region is marked as a frontier point and the tree is reset. In (e) and (f) the loop

repeats where the tree grows back again from the robot’s current position

robot

detected frontier points

Fig. 3: Global and local frontier detectors

points, because global and local frontier detectors can pro-
vide too many frontier points which are extremely close to
each other. If such points are sent to the robot task allocator
module, then there will be unnecessary consumption of
computational resources, and no additional information about
the map is necessarily gained. The filter module also deletes
invalid and old frontier points in each iteration.

D. Robot Task Allocator Module

This module receives filtered frontier points from the filter
module and assigns them to a robot. The design of the
robot task allocator module is similar to [21]. The robot task
allocator module assigns frontier points to be explored by a
particular robot by considering the following:

Navigation cost (N): It is defined as the expected distance
to be traveled by a robot to reach a frontier point. In order
to simplify computation, the navigation cost is calculated by
considering the norm of the difference between a robot’s
current position and the location of a frontier point.

Information gain (I): It is defined as the area of unknown
region expected to be explored for a given frontier point.
The information gain is quantified by counting the number
of unknown cells surrounding a frontier point within a user
defined radius. This radius is referred to as the information
gain radius, which should be set to a value equal to the
perception sensor range. The area is then calculated by multi-
plying the number of cells within the information gain radius,
by the area of each cell (which is computed from the map
resolution). In Fig. 5, the information gain approximately
equals to 1.81 m2 (i.e. number of unknown cells is 181,

node with largest Voronoi region

Fig. 4: Voronoi diagram of RRT

frontier point

Information gain
radius

Fig. 5: Information gain region of a frontier point

each cell is a square with a width equal to map resolution,
which in this case, is 0.1 m).

Revenue from a frontier point (R): For a given frontier
point xfp, and a current robot location xr, the revenue R
obtained from exploring xfp, is calculated as:

R(xfp) = λh(xfp, xr)I(xfp)−N(xfp), (1)

h(xfp, xr) =

{
1, if ||xr − xfp|| > hrad
hgain, hgain > 1

(2)

where λ is a positive user-defined constant which is used
as a weight. The weight λ is used to give more importance
to the information gained from exploring a frontier point,
compared to the navigation cost. This also helps make the
magnitudes of the terms I , and N have a similar order of
magnitude. Also h(xfp, xr) is the hysteresis gain [21] and is
calculated by using Equation 2, it equals unity if the given
frontier point xfp is outside a certain radius hrad from the
robot’s current location xr. The positive number hrad is set
based on user experience. And h(xfp, xr) = hgain, hgain >
1 if the given frontier point is within a certain radius hrad
form the robot’s current location xr. Please note that hgain
should be set larger than 1, so that the robot is biased to
explore frontier points in its vicinity; the advantage of this
is that it avoids overlapping.

For each frontier point, a revenue R is calculated by using
Equation 1. The point with the highest revenue is assigned
to the robot for exploration.

IV. IMPLEMENTATION

Figure 6 shows how the exploration strategy described
above is implemented. The exploration strategy consists
of the SLAM module, path planning module, global and
local frontier detector modules, the filter module, and the
robot task allocator module. Different ready-made ROS
packages are used in the implementation for mapping and
path planning. Also the proposed exploration strategy is itself
implemented as a ROS package consisting of four nodes; the
local frontier detector node, the global frontier detector node,
the filter node, and the robot task allocator node.

The ROS ‘gmapping’ package is used for generating the
map and localizing the robot. The ‘gmapping’ package im-

Fig. 6: Implementation diagram

plements a SLAM algorithm that uses a Rao-Blackwellized
particle filter [12], [13].

The ROS Navigation stack is used to control and direct
the robot towards exploration goals (i.e. the assigned frontier
points xfp). Path planning based on the A* algorithm [18]
is one of the packages available inside the ROS navigation
stack, which is used in our work for planning paths to an
assigned frontier point from the robot’s current position.

The global and local frontier detectors are programmed as
ROS nodes written in C++. Every local and global frontier
detector publishes detected frontier points on a common ROS
topic. The filter node subscribes to this topic, so that it can
receive all detected frontier points. The filter node processes
the received frontier points, as described in Subsection III-C,
and then publishes remaining valid frontier points on a ROS
topic which is subscribed by the robot task allocator node.
The robot task allocator node receives points provided by
the filter node and assigns them for exploration as described
in Subsection III-D. For details related to ROS terminology
(publish, subscribe, etc.) please see [22], and for specific
details related to our implementation please see [23].

V. SIMULATION AND EXPERIMENTAL SETUP

The proposed RRT-based local and global frontier detec-
tors are compared against an image processing-based frontier
detector. The same robot task allocator (explained above)
is used in both cases. Also, the steer function used in
RRT-based exploration (as shown in line 5 of Algorithm 1)
requires tree growth rate η as an argument. Below we present
two simulation maps and one experimental map which are
explored using our proposed exploration strategy. For each
map, we perform a total of 70 exploration runs. Out of
these 70, 10 exploration runs are performed using an image
processing-based frontier detector, the remaining 60 runs
are performed using our proposed local and global frontier
detectors. Further, these 60 exploration runs are divided into
6 sets of 10 exploration runs, where the global frontier
detector in each set uses a steer function with a particular
growth rate η, where η ∈ {0.5, 1, 4, 6, 10, 15}, and the local
frontier detector uses a steer function with fixed η = 1.

(a) First map (large simulation
environment)

(b) Second map (small
simulation environment)

(c) Occupancy grid generated
for the first simulation environ-
ment

(d) Occupancy grid generated
for the second simulation envi-
ronment

Fig. 7: Simulation environments

A. Simulation Setup

Simulations were carried out using the Gazebo simulator
[24], which provides realistic robotic movements, a physics
engine, and the generation of sensor data combined with
noise.

1) Environments Used In Simulations:
Two environments are used for simulation. The first en-

vironment, shown in Fig. 7a, is a large map with an area
of approximately 182 m2 (free space area), and the robot’s
radius is 0.175 m. In the experiments made using this
environment, the laser scanner range is set to 50 m.

The second environment, shown in Fig. 7b, is a small map
made very similar to the real map that is actually used in the
real experimental setup, the area of the map is approximately
49 m2. In the experiments made using this environment,
the laser scanner range is set to 5 m which is similar to
the range of the actual laser scanner (i.e. 4 m) used in
the real setup. We use two sizes of maps and two different
laser scanner ranges, in order to observe the effect of map
size and laser scanner range on the proposed exploration
strategy. The outcome of each exploration experiment is an
occupancy gird. Figure 7c and Fig. 7d show the occupancy
grids obtained for the simulated environments.

B. Experimental Setup

The mobile robot platform used in the experiments is the
Kobuki base. For perception, the Hokuyo URG-04LX laser
range scanner is used [25], it provides range measurements
of up to 4 meters with a coverage area of 240◦. For data
acquisition, the Raspberry Pi (a single board computer) is

(a) (b)
Fig. 8: The real map

In (a) is the real map used in the experiments. In (b) is the
occupancy grid generated for the real map, it is also showing

the robot after exploration has finished.

used. The map where the real experiments are conducted is
shown in Fig. 8a. The area of this map is approximately
49 m2. Figure 8b shows the occupancy gird obtained after
exploring the real map.

VI. RESULTS

As described at the beginning of Section V, 70 exploration
runs are performed for 3 maps (2 simulation, 1 real). At
the end of each exploration run, the total time taken for
exploration and the total distance covered by the robot during
exploration are recorded. All simulation and experimental
results are shown in Fig. 9.

A. Simulation Results

The first set of results is for the first environment with
the large map, shown in Fig. 7a, where the long range laser
scanner is used.

The second set of simulation results is for the second
environment with a small map, shown in Fig. 7b, where a
low range laser scanner is used.

Simulation results show that using RRT-based detection
does not compromise the efficiency of exploration, in terms
of time and total distance needed to cover the map. The
effect of laser scanner range is also insignificant, although it
affects the speed at which RRT expands in the space. The
effect of laser scanner range is compensated by the multiple
RRTs (global frontier detector which never resets, and the
local frontier detector which resets frequently).

B. Experimental Results

The last set of results is produced using the real exper-
imental setup. The results agree in general with the above
mentioned simulation results. The only difference is that,
RRT-based experimental exploration is slightly more time
consuming than the image processing based exploration,
however we believe that such small differences in perfor-
mance show that the proposed exploration strategy will be
viable for 3D exploration, where image processing-based
exploration techniques maybe unusable.

VII. CONCLUSION

In this paper, a new map exploration strategy is presented.
The strategy is based on the RRT algorithm, where RRT
is used to find frontier regions. Usual implementations of

η=0.5 η=1 η=4 η=6 η=10 η=15 Image
based

80

100

120

140

160
T
im

e
 (

s
e
c
)

First simulation Environment (large)

Second simulation Environment (small)

Real map (experimental)

(a)

η=0.5 η=1 η=4 η=6 η=10 η=15 Image
based

20

25

30

35

To
ta

l
D

is
ta

n
c
e
 (

m
)

First simulation Environment (large)

Second simulation Environment (small)

Real map (experimental)

(b)
Fig. 9: Simulation and experimental results

frontier detectors utilize image processing tools to extract
frontier regions, this limits their application to 2D explo-
ration. The proposed strategy uses RRT to detect frontier
points. RRT is not limited to 2D space, hence, RRT can be
applied to find frontier points in 3D map representations,
which can in future allow for efficient 3D exploration. The
proposed strategy is tested by performing a total of 210
exploration runs. Results obtained show that the proposed
strategy can successfully extract frontiers and explore the
entire map in a reasonable amount of time and cost, and
without substantially losing performance when compared
against image processing-based frontier detection techniques.
Another contribution of this work is that, a custom ROS
package for RRT-based exploration has been developed, and
it is available for users at [23]. Future work will consider
multi-robot 3D exploration, and possible different initiation
points for the reset-able local trees.

REFERENCES

[1] B. Yamauchi, “A frontier-based approach for autonomous explo-
ration,” in Proceedings of the IEEE International Symposium on
Computational Intelligence in Robotics and Automation (CIRA ’97).
Washington, DC, USA: IEEE Computer Society, July 1997, pp. 146–
151.

[2] B. Yamauchi, “Frontier-based exploration using multiple robots,” in
Proceedings of the Second International Conference on Autonomous
Agents (AGENTS ’98). New York, NY, USA: ACM, 1998, pp. 47–53.

[3] Y. Wang, A. Liang, and H. Guan, “Frontier-based multi-robot map
exploration using particle swarm optimization,” in Proceedings of the
IEEE Symposium on Swarm Intelligence (SIS), April 2011, pp. 1–6.

[4] P. G. C. N. Senarathne, D. Wang, Z. Wang, and Q. Chen, “Efficient
frontier detection and management for robot exploration,” in Cyber
Technology in Automation, Control and Intelligent Systems (CYBER),
2013 IEEE 3rd Annual International Conference on, May 2013, pp.
114–119.

[5] M. Keidar and G. A. Kaminka, “Robot exploration with fast
frontier detection: Theory and experiments,” in Proceedings
of the 11th International Conference on Autonomous Agents
and Multiagent Systems, ser. AAMAS ’12, vol. 1. Richland,
SC: International Foundation for Autonomous Agents and
Multiagent Systems, 2012, pp. 113–120. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2343576.2343592

[6] G. Oriolo, M. Vendittelli, L. Freda, and G. Troso, “The SRT method:
randomized strategies for exploration,” in Proceedings of the 2004
IEEE International Conference on Robotics and Automation (ICRA
’04), vol. 5, April 2004, pp. 4688–4694.

[7] L. Freda and G. Oriolo, “Frontier-based probabilistic strategies for
sensor-based exploration,” in Proceedings of the 2005 IEEE Inter-
national Conference on Robotics and Automation (ICRA ’05), April
2005, pp. 3881–3887.

[8] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

[9] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,
“Receding horizon “next-best-view” planner for 3d exploration,” in
2016 IEEE International Conference on Robotics and Automation
(ICRA), May 2016, pp. 1462–1468.

[10] H. El-Hussieny, S. Assal, and M. Abdellatif, “Improved backtracking
algorithm for efficient sensor-based random tree exploration,” in
Computational Intelligence, Communication Systems and Networks
(CICSyN), 2013 Fifth International Conference on, June 2013, pp.
19–24.

[11] A. Franchi, L. Freda, G. Oriolo, and M. Vendittelli, “The sensor-based
random graph method for cooperative robot exploration,” IEEE/ASME
Transactions on Mechatronics, vol. 14, no. 2, pp. 163–175, April 2009.

[12] G. Grisettiyz, C. Stachniss, and W. Burgard, “Improving grid-based
slam with Rao-Blackwellized particle filters by adaptive proposals and
selective resampling,” in Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, April 2005, pp. 2432–2437.

[13] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with Rao-Blackwellized particle filters,” IEEE Transac-
tions on Robotics, vol. 23, no. 1, pp. 34–46, Feb 2007.

[14] S. Mukhopadhyay and F. Zhang, “A path planning approach to
compute the smallest robust forward invariant sets,” in In proceedings
of the American Control Conference, June 2014, pp. 1845–1850.

[15] P. Varnell, S. Mukhopadhyay, and F. Zhang, “Discretized boundary
methods for computing smallest forward invariant sets,” in In proceed-
ings of the 55th IEEE Conference on Decision and Control (CDC),
Dec 2016, pp. 6518–6524.

[16] S. Karaman and E. Frazzoli, “Incremental Sampling-based Algorithms
for Optimal Motion Planning,” ArXiv e-prints, May 2010.

[17] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward
feature space analysis,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, no. 5, pp. 603–619, May 2002.

[18] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, July
1968.

[19] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, 2013, software available at
http://octomap.github.com.

[20] S. Karaman and E. Frazzoli, “Sampling-based algorithms for
optimal motion planning,” The International Journal of Robotics
Research, vol. 30, no. 7, pp. 846–894, 2011. [Online]. Available:
http://ijr.sagepub.com/content/30/7/846.abstract

[21] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S. Thrun,
and H. Younes, “Coordination for multi-robot exploration and map-
ping,” in Proceedings of the AAAI National Conference on Artificial
Intelligence, Austin, TX, 2000, pp. 852–858.

[22] A. Romero. (2014, June) Ros concepts. Internet. [Online]. Available:
http://wiki.ros.org/ROS/Concepts

[23] H. Umari. (2016, Sept.) RRT exploration ROS package. Internet.
[Online]. Available: https://github.com/hasauino/rrt exploration

[24] Gazebo simulator. Internet. [Online]. Available: http://gazebosim.org/

[25] Hokuyo URG-04LX laser scanner specifica-
tions. Internet. [Online]. Available: http://www.hokuyo-
aut.jp/02sensor/07scanner/download/pdf/URG-04LX spec en.pdf

